NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3210 MIDTERM EXAM II 11/96 Prof. Powers

- This exam is open book and notes.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- $\bullet\,$ Be sure to include units in your answers.
- Please circle or underline your answers.
- $\bullet\,$ Do NOT do any work on this sheet.
- \bullet Show ALL work.
- Enter your name in the space provided.

1	
2	
3	
Total	

Name:			
Name.			

A laser material with an index of refraction of 1.2 has the energy level diagram shown below. The transition from level 2 to level 1 is lifetime broadened.

Level E(eV)
$$3.5 - \tau_3 = \tau_{32} = 1.2 \text{ ns}$$

$$2 2.0 - \tau_2 = \tau_{21} = \tau_s = 1.3 \text{ ms}$$

$$1 1.2 - \tau_1 = \tau_{10} = 1.1 \text{ ns}$$

$$0 0 - - - -$$

Figure 1: Information for Problems 1 and 2.

- 1. Find the three Einstein coefficients for the radiative transitions between level 2 and level 1 for the material with the properties described above.
- 2. Consider the material above. If the unsaturated gain coefficient, β_0 , is 3,000 m⁻¹ when $\nu = \nu_0$, find the (saturated) gain coefficient when the irradiance level in the material is 1,200 W/m².
- 3. A laser's optical gain medium (**NOT** the one described above) operates at a wavelength of 1.06 μm, has an index of refraction of 1.5, and a length of 25 cm. If the left mirror of the laser is 100% reflecting and the output mirror transmissivity is 95%, the output irradiance of the laser is found to be 1% of the value of the saturation irradiance of the laser. The unsaturated gain coefficient of the material has a value of 5,000 m⁻¹. (Added information: The given numbers in the problem give a T > 1. For a more realistic answer, assume that the output irradiance is 40% of the saturation irradiance when the output mirror is 95% transmitting and that the unsaturated gain coefficient has a value of 1 m⁻¹.) Find the value of optimum reflectivity of the output mirror.